# The K-FAC method for neural network optimization

**James Martens** 

Thanks to my various collaborators on K-FAC research and engineering:

Roger Grosse, Jimmy Ba, Vikram Tankasali, Matthew Johnson, Daniel Duckworth, Zack Nado, and many more!

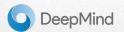






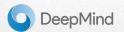
#### Introduction

- Neural networks are everywhere and the need to quickly train them has never been greater
- Main workhorse "diagonal" methods like RMSProp and Adam typically aren't much faster than *well-tuned* SGD w/ momentum
- New non-diagonal methods like <u>K-FAC</u> and <u>Natural Nets</u> provide much more substantial performance improvements and make better use of larger mini-batch sizes
- In this talk I will introduce the basic K-FAC method, discuss extensions to RNNs and Convnets, and present empirical evidence for its efficacy



### Talk outline

- Discussion of second order methods
- Discussion of generalized Gauss-Newton matrix and relationship to Fisher (drawing heavily from this <u>paper</u>)
- Intro to Kronecker-factored approximate curvature (K-FAC) approximation for fully-connected layers (+ results from <u>paper</u>)
- Extension of approximation to RNNs + results (paper)
- Extension of approximation to Convnets + (paper)
- Large batch experiments performed at Google and elsewhere



#### Notation, loss and objective function

• Neural network function:  $f(x, \theta)$ 

• Loss: 
$$-\log p(y|x,\theta) = -\log r(y|f(x,\theta)) = L(y,f(x,\theta))$$

• Loss derivative: 
$$\mathcal{D}V = \frac{\mathrm{d}L(y, f(x, \theta))}{\mathrm{d}V} = -\frac{\mathrm{d}\log p(y|x, \theta)}{\mathrm{d}V}$$

• Objective function:

$$h(\theta) = \mathbb{E}_Q[L(y, f(x, \theta))]$$



#### 2nd-order methods

#### Formulation

- Approximate  $h(\theta)$  by its 2nd-order Taylor series around current  $\theta$ :  $h(\theta + d) \approx h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} H(\theta) d$
- Minimize this local approximation to compute update:

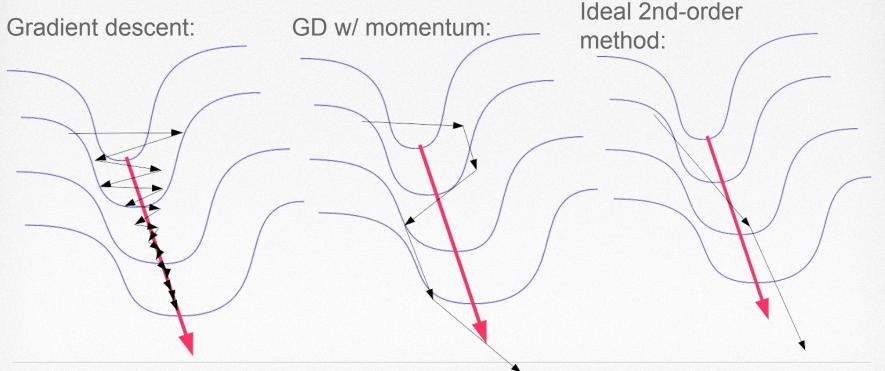
$$-H(\theta)^{-1}\nabla h(\theta) = \operatorname*{arg\,min}_{d} \left( h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} H(\theta) d \right)$$

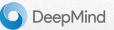
• Update current iterate:

$$\theta_{k+1} = \theta_k - H(\theta)^{-1} \nabla h(\theta_k)$$



#### A cartoon comparison of different optimizers





#### The model trust problem in 2nd-order methods

- Quadratic approximation of loss is only trustworthy in a local region around current  $\boldsymbol{\theta}$
- Unlike gradient descent, which implicitly approximates  $LI \approx H(\theta)$ (where L upper-bounds the **global** curvature), the real  $H(\theta)$  may underestimate curvature along some directions as we move away from current  $\theta$  (and curvature may even be *negative*!)
- **Solution:** Constrain update d to lie in some local region R around 0 where approximation remains a good one

$$\underset{d \in R}{\operatorname{arg\,min}} \left( h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} H(\theta) d \right)$$



#### Trust-regions and "damping" (aka Tikhonov regularization)

• If we take  $R = \{d : ||d||_2 \le r\}$  then computing  $\underset{d \in R}{\operatorname{arg\,min}} \left(h(\theta) + \nabla h(\theta)^\top d + \frac{1}{2}d^\top H(\theta)d\right)$ 

is often equivalent to computing  $-(H(\theta) + \lambda I)^{-1} \nabla h(\theta) = \underset{d}{\operatorname{arg\,min}} \left( h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} (H(\theta) + \lambda I) d \right)$ for some  $\lambda$ .

•  $\lambda$  is a complicated function of r, but fortunately we can just work with  $\lambda$  directly. There are effective heuristics for adapting  $\lambda$  such as the "Levenberg-Marquardt" method.



#### Alternative curvature matrices

A complementary solution to the model trust problem

- In place of the Hessian we can use a matrix with more forgiving properties that tends to upper-bound the curvature over larger regions (without being too pessimistic!)
- Very important effective technique in practice if used alongside previously discussed trust-region / damping techniques
- Some important examples
  - Generalized Gauss-Newton matrix (GGN)
  - Fisher information matrix (often equivalent to the GGN)
  - Empirical Fisher information matrix (a type of approximation to the Fisher)

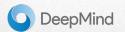


#### **Generalized Gauss-Newton**

#### Definition

To define the GGN matrix we require that •  $h(\theta) = \frac{1}{m} \sum_{i=1}^{m} h_i(\theta) = \frac{1}{m} \sum_{i=1}^{m} \ell(y_i, f(x_i, \theta))$ where  $\ell(y,z)$  is a loss that is convex in z, and  $f(x, \theta)$  is some high-dimensional function (e.g. neural network w/ input x) The GGN is then given by  $G = \frac{1}{m} \sum_{i=1}^{m} J_i^{\top} H_i J_i \quad \text{where } J_i \text{ is Jacobian of } f(x_i, \theta) \text{ w.r.t.} \theta$ and  $H_i$  is the Hessian of  $\ell(y_i, z_i)$ 

w.r.t. 
$$z_i = f(x_i,$$



H

#### **Generalized Gauss-Newton**

• *G* is equal to the Hessian of  $h(\theta)$  if we replace each  $f(x_i, \theta)$  with its local 1st-order approximation centered at current  $\theta$ :

$$f(x_i, \theta') \approx f(\theta) + J_i \cdot (\theta' - \theta)$$

• When  $\ell(y,z) = \|y-z\|^2/2$  we have  $H_i = I$  and so  $G = \frac{1}{m}\sum_{i=1}^m J_i^\top J_i$ 

which is the matrix used in the well-known Gauss-Newton approach for optimizing nonlinear least squares



#### Relationship of GGN to the Fisher

• When  $\ell(y, z) = -\log p(y|z)$  with z the "natural parameter" of some exponential family conditional density p(y|z), G becomes **equivalent** to the Fisher information matrix:

$$F = \mathbb{E}[\mathcal{D}\theta \mathcal{D}\theta^{\top}] = \operatorname{cov}(\mathcal{D}\theta, \mathcal{D}\theta)$$

Recall notation:  

$$\mathcal{D}V = \frac{\mathrm{d}L(y, f(x, \theta))}{\mathrm{d}V} = -\frac{\mathrm{d}\log p(y|x, \theta)}{\mathrm{d}V}$$

- In this case  $G^{-1}\nabla h(\theta)$  is equal to the well-known "natural gradient", although has the additional interpretation as a second-order update
- This relationship justifies the common use of methods like damping/trust regions with natural gradient based optimizers



#### **GGN** Properties

The GGN matrix has the following nice properties:

- it always PSD
- it is often more "conservative" than the Hessian (but isn't guaranteed to be larger in *all* directions)
- optimizer using update  $d = -\alpha G^{-1} \nabla h(\theta)$  will be invariant to any smooth reparameterization in limit as  $\alpha \to 0$
- for RELU networks the GGN is equal to the Hessian on diagonal blocks
- and most importantly... works much better than the Hessian in practice for neural networks!

Updates computed using the GGN can sometimes make *orders of magnitude* more progress than gradient updates for neural nets. But there is a catch...



#### The problem of high dimensional objectives

The main issue with 2nd-order methods

- For neural networks,  $heta \in {\rm I\!R}^n$  can have 10s of millions of dimensions
- We simply cannot compute and store an  $n\times n$  matrix for such an n , let alone invert it!  $(\mathcal{O}(n^3))$
- Thus we must approximate the curvature matrix using one of a number of techniques that simplify its structure to allow for efficient...
  - computation,
  - storage,
  - and inversion



#### Curvature matrix approximations

- Well known curvature matrix approximations include:
  - diagonal (e.g. RMSprop, Adam)
  - block-diagonal (e.g. <u>TONGA</u>)
  - low-rank + diagonal (e.g. L-BFGS)
  - Krylov subspace (e.g. <u>HF</u>)
- The K-FAC approximation of the Fisher/GGN uses a more sophisticated approximation that exploits the special structure present of neural networks



#### The amazing Kronecker product

• The Kronecker product is defined by:

$$B \otimes C \equiv \begin{bmatrix} [B]_{1,1}C & \cdots & [B]_{1,n}C \\ \vdots & \ddots & \vdots \\ [B]_{m,1}C & \cdots & [B]_{m,n}C \end{bmatrix}$$

• And has many nice properties, such as:



#### Kronecker-factored approximation

• Consider a weight matrix W in network which computes the mapping:

$$s = Wa$$

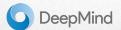
(i.e. a "fully connected layer" or "linear layer")

Here, and going forward  ${\cal F}$  will refer just to the  ${\it block}$  of the Fisher corresponding to W

- Define g = Ds and observe that  $DW = ga^{\top}$ . If we approximate g and a as statistically independent, we can write F as:
- $F = \operatorname{cov}(\operatorname{vec}(\mathcal{D}W), \operatorname{vec}(\mathcal{D}W)) = \mathbb{E}[\operatorname{vec}(ga^{\top}) \operatorname{vec}(ga^{\top})^{\top}] = \mathbb{E}[(a \otimes g)(a \otimes g)^{\top}]$ 
  - $= \mathbb{E}[(aa^{\top}) \otimes (gg^{\top})] = \mathbb{E}[aa^{\top}] \otimes \mathbb{E}[gg^{\top}] = A \otimes G,$

Recall notation:

 $\mathcal{D}V = \frac{\mathrm{d}L(y, f(x, \theta))}{\mathrm{d}V} = -\frac{\mathrm{d}\log p(y|x, \theta)}{\mathrm{d}V}$ 



#### Kronecker-factored approximation (cont.)

• Approximating  $F = A \otimes G$  allows us to easily invert F and multiply the result by a vector, due to the following identities for Kronecker products:

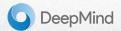
 $(B \otimes C)^{-1} = B^{-1} \otimes C^{-1}$  and  $(B \otimes C) \operatorname{vec}(X) = \operatorname{vec}(CXB^{\top})$ 

- We can easily estimate the matrices
   A = 𝔼[aa<sup>T</sup>] and G = 𝔼[gg<sup>T</sup>] = cov(g,g)
   using simple Monte-Carlo and exp-decayed moving averages.
- They are of size **d** by **d** where **d** is the number of units in the incoming or outgoing layer. Thus inverting them is relatively cheap, and can be amortized over many iterations.



#### Further remarks about the K-FAC approximation

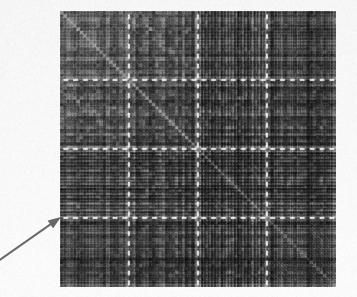
- Originally appeared in a 2000 paper by Tom Heskes!
- Can be seen as discarding order 3+ cumulants from the joint distribution of the a's and g's
  - (And thus is exact if the a's and g's are jointly Gaussian-distributed)
- For linear neural networks with a squared error loss:
  - is exact on the diagonal blocks
  - approximate natural gradient differs from exact one by a constant factor (<u>Bernacchia et al., 2018</u>)
- Can also be derived purely from the GGN perspective without invoking the Fisher (<u>Botev et al., 2017</u>)



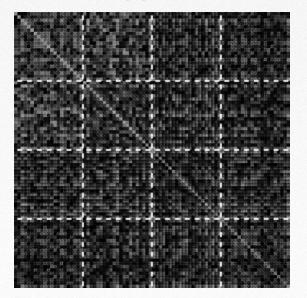
### Visual inspection of approximation quality

4 middles layers of partially trained MNIST classifier

Exact



Approx

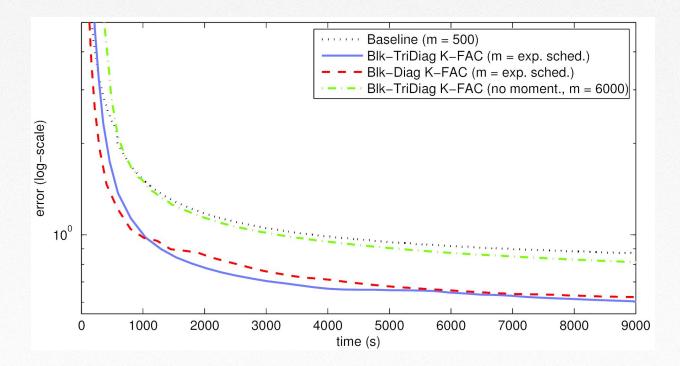


Dashed lines delineate the blocks

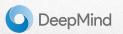
(plotting absolute value of entries, dark means small) K-FAC – James Martens

DeepMind

#### MNIST deep autoencoder - single GPU wall clock



Baseline = highly optimized SGD w/ momentum



#### Some stochastic convergence theory

- There is no **asymptotic** advantage to using 2nd-order methods or momentum over plain SGD w/ Polyak averaging
- Actually, SGD w/ *Polyak averaging* is **asymptotically optimal** among any estimator that sees *k* training cases, obtaining the optimal asymptotic rate:

$$E[h(\theta_k)] - h(\theta^*) \in \mathcal{O}\left(\frac{1}{k}\operatorname{tr}\left(H(\theta^*)^{-1}\Sigma\right)\right)$$

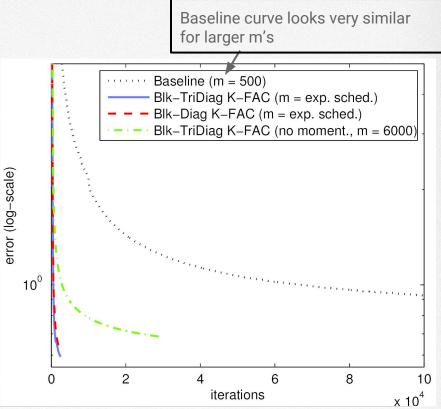
where  $\theta^*$  is the optimum, and  $\Sigma$  is the (the limiting value of) the per-case gradient covariance

• However, **pre-asymptotically** there can still be an advantage to using 2nd-order updates and/or momentum. (Asymptotics kick in when signal-to-noise ratio in stochastic gradient becomes small.)



#### MNIST deep autoencoder - iteration efficiency

- K-FAC uses far fewer total iterations than a well-tuned baseline when given a **very large** mini-batch size
  - This makes it ideal for large distributed systems
- Intuition: the asymptotics of stochastic convergence kick in sooner with more powerful optimizers since "optimization" stops being the bottleneck sooner



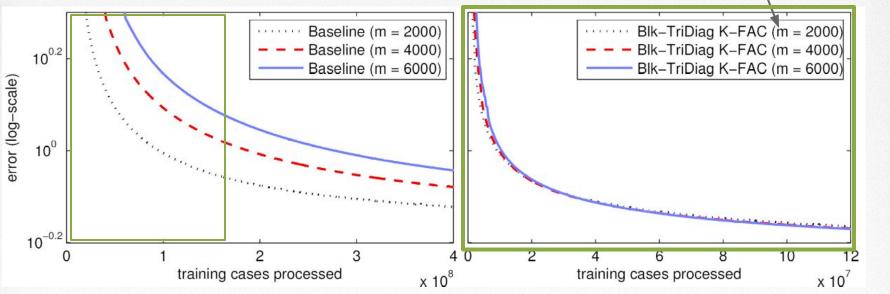


#### MNIST deep autoencoder - data efficiency

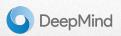
Baselines spends much longer in pre-asymptotic phase

Exact





Baseline = highly optimized SGD w/ momentum + Polyak averaging



#### K-FAC approximation for recurrent layers

• The situation for RNNs is somewhat more complicated. We have

$$s_t = W a_t,$$

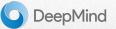
where t indexes the time-step from 1 to  $\mathcal{T}$ .

• Defining  $g_t = \mathcal{D}s_t$  we have that

$$\mathcal{D}W = \sum_{t=1}^{\mathcal{T}} g_t a_t^{\top}$$

Recall notation:  
$$\mathcal{D}V = \frac{\mathrm{d}L(y, f(x, \theta))}{\mathrm{d}V} = -\frac{\mathrm{d}\log p(y|x, \theta)}{\mathrm{d}V}$$

• Define 
$$w_t = \operatorname{vec}(g_t a_t^{\top})$$
 so that  $\operatorname{vec}(\mathcal{D}W) = \sum_{t=1}^{\mathcal{T}} w_t$ . Then we have  
 $F = \mathbb{E}_{\mathcal{T}}[F_{\mathcal{T}}]$ , where  
 $F_{\mathcal{T}} = \operatorname{cov}(\operatorname{vec}(\mathcal{D}W), \operatorname{vec}(\mathcal{D}W) | \mathcal{T}) = \operatorname{cov}\left(\sum_{t=1}^{\mathcal{T}} w_t, \sum_{t=1}^{\mathcal{T}} w_t \middle| \mathcal{T}\right) = \sum_{t=1}^{\mathcal{T}} \sum_{s=1}^{\mathcal{T}} \operatorname{cov}(w_t, w_s | \mathcal{T})$ 



#### **Basic initial approximations**

- Denote  $V_{t,s} = \operatorname{cov}(w_t, w_s)$
- If we make the following approximating assumptions:
  - $\circ ~~ {\cal T}$  is independent of the  $w_t$  's
  - $\circ V_{t,s}$  depends only on d=t-s and is given by  $V_d$  ("Temporal homogeneity")
  - $\circ \quad a_t$  's and  $g_t$  's are independent (the original "K-FAC approximation"), so that:

 $V_d = A_d \otimes G_d$  where  $A_{t-s} = A_{t,s} = \mathbb{E}[a_t a_s^\top]$  and  $G_{t-s} = G_{t,s} = \mathbb{E}[g_t g_s^\top]$ 

then we have the initial approximation:

$$F_{\mathcal{T}} = \sum_{d=-\mathcal{T}}^{\mathcal{T}} (\mathcal{T} - |d|) V_d = \sum_{d=-\mathcal{T}}^{\mathcal{T}} (\mathcal{T} - |d|) (A_d \otimes G_d)$$



K-FAC - James Martens

#### Assuming independence across time

- Because a large sum of Kronecker products cannot be efficiently inverted we need to make additional approximating assumptions
- The simplest one we can make is to assume that the  $w_t$ 's are independent across time (or more weakly that the  $g_t$ 's are uncorrelated across time), so that  $V_d = 0$  for  $d \neq 0$ .
- This gives us and thus:  $F_{\mathcal{T}} = \sum_{d=-\mathcal{T}}' (\mathcal{T} - |d|) V_d = (\mathcal{T} - 0) V_0 = \mathcal{T} V_0 = \mathcal{T} A_0 \otimes G_0$  $F = \mathbb{E}[\mathcal{T}] (A_0 \otimes G_0)$

This is just a single Kronecker-product and therefore easy to estimate and invert!



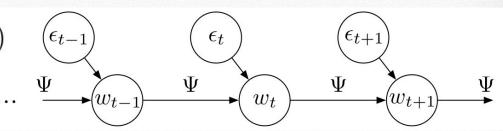
#### Modeling temporal relationships using an LGGM

- Instead of assuming that temporal relationships between the  $w_t$ 's is non-existent we can try to model them using a simple statistical model
- Perhaps the simplest such (non-trivial) model is a chained structured Linear Gaussian Graphical Model (LGGM) defined by

 $w_t = \Psi w_{t-1} + \epsilon_t$ 

where,

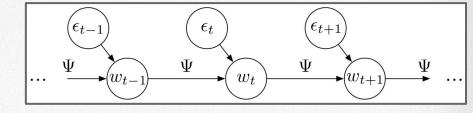
 $\epsilon_t$  are i.i.d. from  $\mathcal{N}(0, \Sigma)$ and  $\Psi$  is a square matrix with spectral radius < 1



 simplify the computations we will assume that this models extends infinitely in both directions

#### Initial computations

• It is straightforward to show that  $\Psi = V_1 V_0^{-1}$ 



• Define "transformed" quantities

$$\hat{F}_{\mathcal{T}} = V_0^{1/2} F_{\mathcal{T}} V_0^{1/2}$$
 and  $\hat{\Psi} = \hat{V}_1 = V_0^{-1/2} \Psi V_0^{1/2}.$ 

- And note that because we have  $F^{-1} \ = \ V_0^{-1/2} \hat{F}^{-1} V_0^{-1/2}$  it suffices to compute  $\hat{F}^{-1}$ 



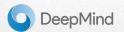
#### Option 1: $V_1$ is symmetric

- If we assume that  $V_1$ , the 1-step temporal cross-covariance, is symmetric, this implies that  $\hat{\Psi}$  is symmetric
- Let  $U \operatorname{diag}(\hat{\psi}) U^{\top} = \hat{\Psi}$  be the eigendecomposition of  $\hat{\Psi}$
- It can be shown that

$$\hat{F}^{-1} = U \operatorname{diag}(\gamma(\hat{\psi})) U^{\top}$$

where

$$\gamma(x) = 1/\mathbb{E}_{\mathcal{T}}[\eta_{\mathcal{T}}(x)] \quad \text{with} \quad \eta_{\mathcal{T}}(x) = \frac{\mathcal{T}(1-x^2) - 2x(1-x^{\mathcal{T}})}{(1-x)^2}$$



### Option 2: Using the limiting value as $\mathcal{T} ightarrow \infty$

• A second option to obtain a tractable formula is to compute the limiting value:  $\hat{r}_{1} = r_{2} (\hat{r}_{1})^{2}$ 

$$\hat{F} = \mathbb{E}_{\mathcal{T}}[\hat{F}_{\mathcal{T}}^{(\infty)}]$$

where we define

$$\hat{F}_{\mathcal{T}}^{(\infty)} \equiv \lim_{\mathcal{T}' \to \infty} \frac{\mathcal{T}}{\mathcal{T}'} \hat{F}_{\mathcal{T}'}.$$

This gives (with some work) the remarkably simple expression:

$$\hat{F}^{-1} = \frac{1}{\mathbb{E}_{\mathcal{T}}[\mathcal{T}]} (I - \hat{\Psi}) (I - \hat{\Psi}^{\top} \hat{\Psi})^{-1} (I - \hat{\Psi}^{\top})$$



K-FAC - James Martens

#### Efficient computation with Kronecker products

• The formulae for  $\hat{F}^{-1}$  in **Option 1** and **Option 2** can be used to efficiently multiply a vector by  $\hat{F}^{-1}$ , starting from the identities:

 $V_0 = A_0 \otimes G_0$  and  $V_1 = A_1 \otimes G_1$ 

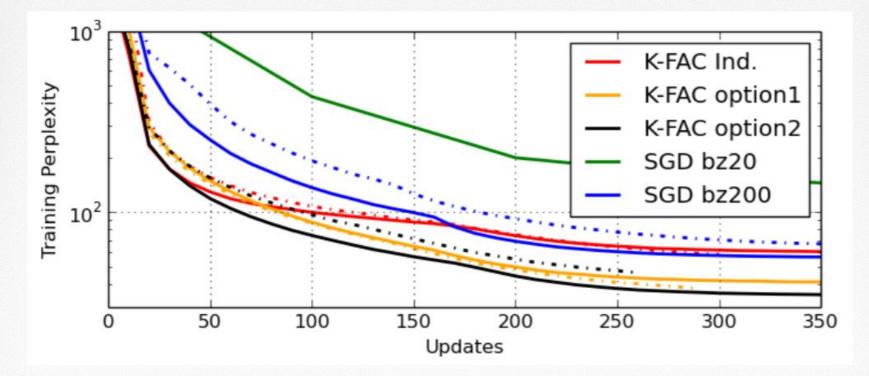
(Boils down to several eigen-decompositions and a dozen or so matrix-matrix multiplications with **d** by **d** matrices, where **d** = layer width.)

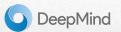
- Cost of these operations is independent of  ${\mathcal T}$ , and can be amortized over iterations and parallelized.
- Factors estimated using decayed averages that are also averaged over time-steps. e.g.  $1 \sum_{r=1}^{T} \mathbb{E}[a_{r} = a_{r}^{T}]$

$$G_1 = \frac{1}{\mathcal{T}} \sum_{t=1}^{\prime} \mathbb{E}[g_{t+1}g_t^{\top}]$$

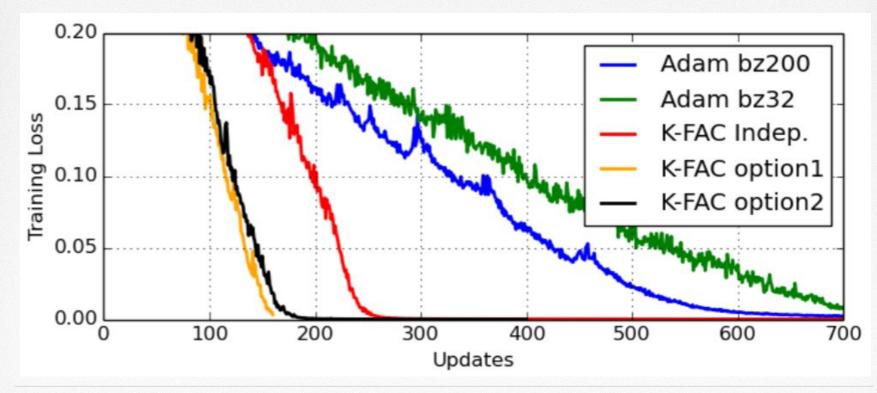


#### Experiment 1: 2-layer LSTM on Penn TreeBank





#### Experiment 2: DNC "copy task"





### Kronecker approximation for conv layers (KFC)

- A convolutional layer can be described as follows:
  - $\circ~$  extract a "patch vector"  $a_t$  for each "location"  $t\in\{1,2,...,\mathcal{T}\}$  from the image/feature map incoming to the layer
  - multiply each patch vector by a "filter bank" matrix W:

$$s_t = W a_t,$$

- $\circ$  form the output feature map from the  $s_t$ 's according location t
- Gradient is once again just  $\mathcal{D}W = \sum_{t=1}^{\mathcal{T}} g_t a_t^{\top}$  where  $g_t = \mathcal{D}s_t$
- This is structurally very similar to the recurrent case, with locations playing the role of time-steps



### Kronecker approximation for conv layers (KFC)

• If we make the following approximating assumptions:

- $\circ$  the  $a_t$  's are independent of the  $g_t$  's,
- $\circ$  different  $g_t$ 's uncorrelated,
- $\circ~$  the distributions of  $a_t$  and  $g_t$  don't depend on index t (i.e. "spatially homogeneous")

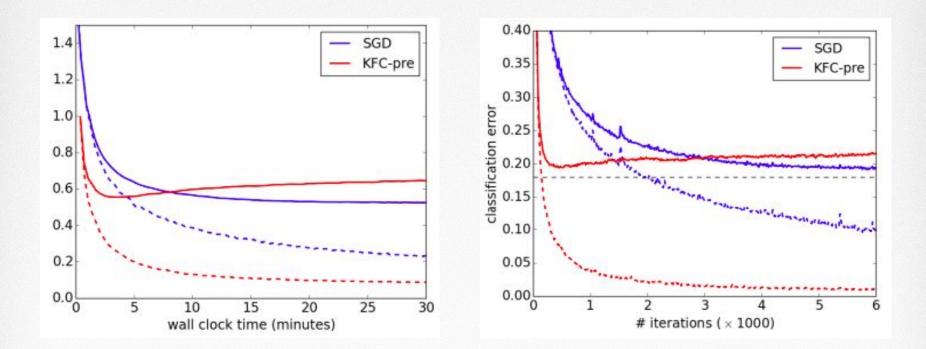
Then following a similar (but simpler) argument to the recurrent case, the Fisher block for W is given by  $F = \mathcal{T} \cdot (A \otimes G)$ 

Factors estimated using decayed averages that are also averaged over locations. e.g.  $A = \frac{1}{\tau} \sum_{t=1}^{\tau} \mathbb{E}[a_t a_t^{\top}]$ 



K-FAC – James Martens

#### CIFAR-10 convnet

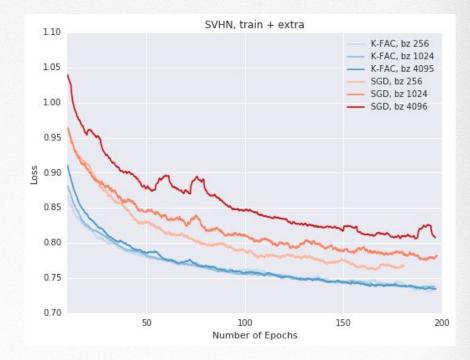




K-FAC - James Martens

#### Recent large mini-batch experiments

- Resnet-50 trained on augmented SVHN dataset
- K-FAC maintains data efficiency as batch size increases while SGD w/ momentum baseline tops out quickly

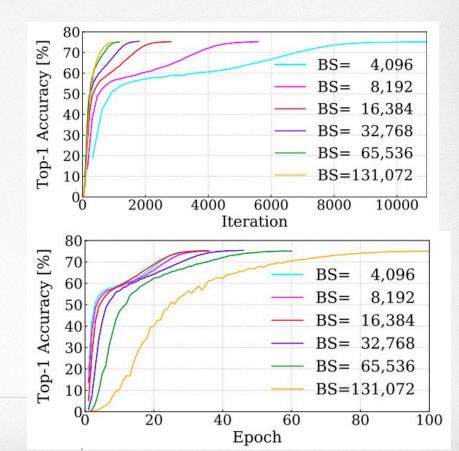


#### Credit: Daniel Duckworth



#### Recent large mini-batch experiments

- Recent <u>paper</u> from the RIKEN lab has applied K-FAC to Resnet-50 on *Imagenet*
- They use extremely large mini-batches up to 130k with massively parallel computation
- Show significant improvement in number of iterations all the way up to mini-batch sizes of 65k





#### **Public TensorFlow implementation**

- There is a highly sophisticated implementation of K-FAC in TensorFlow available on Github
- Supports the following and more:
  - Fully-connected, convolutional, and recurrently layers
  - Various distribution strategies
  - Automatic structure determination of the graph
  - Automatic adjustment of damping, learning rate and momentum



| Why GitHub                    | ? ∨ Enterprise Explore ∨ Mai                                                                                                   | rketplace Pricing 🗸        |                  | Sign in Sign up                                                    |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|--------------------------------------------------------------------|
| tensorflow / kfa              | ac                                                                                                                             |                            | • Watch 10       | ★ Star 92 ¥ Fork 18                                                |
| <> Code () Issu               | ues 6 🕅 Pull requests 0 🕅                                                                                                      | Projects 0 🔟 Insights      |                  |                                                                    |
| n implementation              | of KFAC for TensorFlow                                                                                                         |                            |                  |                                                                    |
| 🕝 100 commit                  | ts 🖗 1 branch                                                                                                                  | S 0 releases               | 4 6 contributors | 화 Apache-2.0                                                       |
| Branch: master -              | New pull request                                                                                                               |                            | Fi               | nd file Clone or download                                          |
| mattij [kfac] bump            | tensorflow version requirements in setup.p                                                                                     | and .travis.yml            | Lates            | it commit 27baa36 8 hours ag                                       |
| mattij [kfac] bump            | o tensorflow version requirements in setup.p<br>\nInternal refactor\n                                                          | w and .travis.ym           | Lates            | -                                                                  |
| -                             |                                                                                                                                |                            | Lates            | 9 days ag                                                          |
| docs<br>kfac                  | \ninternal refactor\n                                                                                                          | al in autoencoder_mnist.py |                  | t commit 27baa36 8 hours ag<br>9 days ag<br>a day ag<br>7 hours ag |
| docs                          | \nInternal refactor\n<br>Made damping adaptation option                                                                        | al in autoencoder_mnist.py |                  | 9 days ag<br>a day ag<br>7 hours ag                                |
| docs<br>kfac<br>:travis.yml   | \nInternal refactor\n<br>Made damping adaptation option<br>[kfac] bump tensorflow version n                                    | al in autoencoder_mnist.py |                  | 9 days ag<br>a day ag                                              |
| docs kfac  travis.yml AUTHORS | \nInternal refactor\n<br>Made damping adaptation option<br>[Kfac] bump tensorflow version n<br>Placeholder for initial commit. | al in autoencoder_mnist.py |                  | 9 days ag<br>a day ag<br>7 hours ag<br>9 days ag                   |



## Thanks for listening! Questions?