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Introduction

● Neural networks are everywhere and the need to quickly train them has never 
been greater

● Main workhorse “diagonal” methods like RMSProp and Adam typically aren’t 
much faster than well-tuned SGD w/ momentum

● New non-diagonal methods like K-FAC and Natural Nets provide much more 
substantial performance improvements and make better use of larger 
mini-batch sizes

● In this talk I will introduce the basic K-FAC method, discuss extensions to 
RNNs and Convnets, and present empirical evidence for its efficacy

https://arxiv.org/abs/1503.05671
https://arxiv.org/abs/1507.00210
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Talk outline

● Discussion of second order methods

● Discussion of generalized Gauss-Newton matrix and relationship to Fisher 
(drawing heavily from this paper)

● Intro to Kronecker-factored approximate curvature (K-FAC) approximation for 
fully-connected layers (+ results from paper)

● Extension of approximation to RNNs + results (paper)

● Extension of approximation to Convnets + (paper)

● Large batch experiments performed at Google and elsewhere

https://arxiv.org/abs/1412.1193
https://arxiv.org/abs/1503.05671
https://openreview.net/pdf?id=HyMTkQZAb
https://arxiv.org/abs/1602.01407
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Notation, loss and objective function

● Neural network function: 

● Loss: 

● Loss derivative:

● Objective function:
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2nd-order methods
Formulation

● Approximate           by its 2nd-order Taylor series around current     :

● Minimize this local approximation to compute update:

● Update current iterate:
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A cartoon comparison of different optimizers

 Gradient descent: GD w/ momentum:
Ideal 2nd-order 
method:
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● Quadratic approximation of loss is only trustworthy in a local region around 
current 

● Unlike gradient descent, which implicitly approximates                                         
(where     upper-bounds the global curvature), the real           may 
underestimate curvature along some directions as we move away from 
current      (and curvature may even be negative!)

● Solution: Constrain update     to lie in some local region      around            
where approximation remains a good one

The model trust problem in 2nd-order methods 
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Trust-regions and “damping”  (aka Tikhonov regularization)

● If we take                                          then computing

is often equivalent to computing
                        
        for some    .

●     is a complicated function of    , but fortunately we can just work with 
directly.  There are effective heuristics for adapting     such as the 
“Levenberg-Marquardt” method.
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● In place of the Hessian we can use a matrix with more forgiving properties 
that tends to upper-bound the curvature over larger regions (without being too 
pessimistic!) 

● Very important effective technique in practice if used alongside previously 
discussed trust-region / damping techniques

● Some important examples
○ Generalized Gauss-Newton matrix (GGN)

○ Fisher information matrix (often equivalent to the GGN)

○ Empirical Fisher information matrix (a type of approximation to the Fisher)

Alternative curvature matrices
A complementary solution to the model trust problem
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Generalized Gauss-Newton
Definition

● To define the GGN matrix we require that

        where
                           is a loss that is convex in     ,  and 

                 is some high-dimensional function (e.g. neural network w/ input     )

● The GGN is then given by
  where        is Jacobian of                   w.r.t.     
  and          is the Hessian of                    

w.r.t.
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●      is equal to the Hessian of          if we replace each                 with its local 
1st-order approximation centered at current     :

● When                                             we have                 and so

  

which is the matrix used in the well-known Gauss-Newton approach for 
optimizing nonlinear least squares

Generalized Gauss-Newton
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Relationship of GGN to the Fisher

● When                                             with     the “natural parameter” of some 
exponential family conditional density             ,       becomes equivalent to the 
Fisher information matrix:                                                                                  

● In this case                      is equal to the well-known “natural gradient”, 
although has the additional interpretation as a second-order update

● This relationship justifies the common use of methods like damping/trust 
regions with natural gradient based optimizers

Recall notation:
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GGN Properties
The GGN matrix has the following nice properties:
● it always PSD

● it is often more “conservative” than the Hessian (but isn’t guaranteed to be larger in 
all directions)

● optimizer using update                                      will be invariant to any smooth 
reparameterization in limit as 

● for RELU networks the GGN is equal to the Hessian on diagonal blocks

● and most importantly… works much better than the Hessian in practice for 
neural networks!

Updates computed using the GGN can sometimes make orders of magnitude 
more progress than gradient updates for neural nets.  But there is a catch...
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The problem of high dimensional objectives
The main issue with 2nd-order methods

● For neural networks,                    can have 10s of millions of dimensions

● We simply cannot compute and store an                  matrix for such an     , let 
alone invert it!  (              )

● Thus we must approximate the curvature matrix using one of a number of 
techniques that simplify its structure to allow for efficient... 
○ computation, 

○ storage,

○ and inversion
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Curvature matrix approximations

● Well known curvature matrix approximations include:
○ diagonal (e.g. RMSprop, Adam)

○ block-diagonal (e.g. TONGA)

○ low-rank + diagonal (e.g. L-BFGS)

○ Krylov subspace (e.g. HF)

● The K-FAC approximation of the Fisher/GGN uses a more sophisticated 
approximation that exploits the special structure present of neural networks

http://www.iro.umontreal.ca/~lisa/publications2/index.php/attachments/single/101
http://www.cs.toronto.edu/~jmartens/docs/Deep_HessianFree.pdf
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The amazing Kronecker product

● The Kronecker product is defined by:

● And has many nice properties, such as:
○  

○  

○



K-FAC — James Martens

● Consider a weight matrix       in network which computes the mapping:

(i.e. a “fully connected layer” or “linear layer”)

Here, and going forward      will refer just to the block of the Fisher 
corresponding to 

● Define                  and observe that                          .  If we approximate     and       
as statistically independent, we can write      as:

Kronecker-factored approximation

Recall notation:
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Kronecker-factored approximation (cont.)

● Approximating                            allows us to easily invert       and multiply the 
result by a vector, due to the following identities for Kronecker products:

● We can easily estimate the matrices

using simple Monte-Carlo and exp-decayed moving averages.

● They are of size d by d where d is the number of units in the incoming or 
outgoing layer.  Thus inverting them is relatively cheap, and can be amortized 
over many iterations.
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Further remarks about the K-FAC approximation

● Originally appeared in a 2000 paper by Tom Heskes!

● Can be seen as discarding order 3+ cumulants from the joint distribution of 
the    ’s and    ’s
○ (And thus is exact if the    ’s and    ’s are jointly Gaussian-distributed)

● For linear neural networks with a squared error loss:
○ is exact on the diagonal blocks
○ approximate natural gradient differs from exact one by a constant factor 

(Bernacchia et al., 2018)

● Can also be derived purely from the GGN perspective without invoking the 
Fisher (Botev et al., 2017)

https://www.researchgate.net/publication/2820996_On_Natural_Learning_and_Pruning_in_Multilayered_Perceptrons
https://papers.nips.cc/paper/7834-exact-natural-gradient-in-deep-linear-networks-and-its-application-to-the-nonlinear-case.pdf
https://arxiv.org/abs/1706.03662
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Visual inspection of approximation quality
4 middles layers of partially trained MNIST classifier

(plotting absolute value of entries, dark means small)

Exact Approx

Dashed lines delineate the blocks
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MNIST deep autoencoder - single GPU wall clock

Baseline = highly optimized SGD w/ momentum
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Some stochastic convergence theory
● There is no asymptotic advantage to using 2nd-order methods or momentum 

over plain SGD w/ Polyak averaging

● Actually, SGD w/ Polyak averaging is asymptotically optimal among any 
estimator that sees     training cases, obtaining the optimal asymptotic rate:

where      is the optimum, and      is the (the limiting value of) the per-case 
gradient covariance

● However,  pre-asymptotically there can still be an advantage to using 
2nd-order updates and/or momentum. (Asymptotics kick in when 
signal-to-noise ratio in stochastic gradient becomes small.)
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MNIST deep autoencoder - iteration efficiency

● K-FAC uses far fewer total iterations 
than a well-tuned baseline when 
given a very large mini-batch size
○ This makes it ideal for large 

distributed systems

● Intuition: the asymptotics of 
stochastic convergence kick in 
sooner with more powerful 
optimizers since “optimization” 
stops being the bottleneck sooner

Baseline curve looks very similar 
for larger m’s
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MNIST deep autoencoder - data efficiency
Baselines spends much longer in pre-asymptotic phase

Exact Approx

Baseline = highly optimized SGD w/ momentum + Polyak averaging

m = mini-batch size
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K-FAC approximation for recurrent layers

● The situation for RNNs is somewhat more complicated.  We have

where     indexes the time-step from 1 to      .

● Defining                     we have that                                          

● Define                              so that                                     .. Then we have
     ,   where

Recall notation:
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Basic initial approximations

● Denote 

● If we make the following approximating assumptions:
○       is independent of the        ’s

○          depends only on                   and is given by         (“Temporal homogeneity”)

○      ’s and      ’s are independent (the original “K-FAC approximation”), so that:

                                           where                                                    and 

then we have the initial approximation:



K-FAC — James Martens

Assuming independence across time

● Because a large sum of Kronecker products cannot be efficiently inverted we 
need to make additional approximating assumptions

● The simplest one we can make is to assume that the      ’s are independent 
across time (or more weakly that the     ‘s are uncorrelated across time), so 
that                 for             .

● This gives us 
and thus: 

 

     This is just a single Kronecker-product and therefore easy to estimate and invert!
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Modeling temporal relationships using an LGGM

● Instead of assuming that temporal relationships between the      ’s is 
non-existent we can try to model them using a simple statistical model

● Perhaps the simplest such (non-trivial) model is a chained structured Linear 
Gaussian Graphical Model (LGGM) defined by

where,

and      is a square matrix with 
spectral radius < 1

● simplify the computations we will assume that this models extends infinitely 
in both directions
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● It is straightforward to show that

● Define “transformed” quantities

● And note that because we have 

it suffices to compute 

                                                             

Initial computations
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Option 1:       is symmetric

● If we assume that       , the 1-step temporal cross-covariance, is symmetric, 
this implies that      is symmetric 

● Let                                        be the eigendecomposition of 

● It can be shown that

where 
with      
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Option 2: Using the limiting value as                 .

● A second option to obtain a tractable formula is to compute the limiting 
value:

where we define

This gives (with some work) the remarkably simple expression:
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Efficient computation with Kronecker products

● The formulae for          in Option 1 and Option 2 can be used to efficiently 
multiply a vector by         , starting from the identities:

(Boils down to several eigen-decompositions and a dozen or so matrix-matrix 
multiplications with d by d matrices, where d = layer width.)  

● Cost of these operations is independent of      , and can be amortized over 
iterations and parallelized.

● Factors estimated using decayed averages that are also averaged over 
time-steps. e.g. 
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Experiment 1: 2-layer LSTM on Penn TreeBank
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Experiment 2: DNC “copy task”
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Kronecker approximation for conv layers (KFC)

● A convolutional layer can be described as follows:
○ extract a “patch vector”      for each “location”                                     from the 

image/feature map incoming to the layer

○ multiply each patch vector by a “filter bank” matrix      :

○ form the output feature map from the      ’s according location 

● Gradient is once again just      where 

● This is structurally very similar to the recurrent case, with locations playing 
the role of time-steps
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Kronecker approximation for conv layers (KFC)

● If we make the following approximating assumptions:
○ the      ’s are independent of the      ’s,

○ different      ’s uncorrelated,

○ the distributions of       and      don’t depend on index    (i.e. “spatially 
homogeneous”)

Then following a similar (but simpler) argument to the recurrent case, the 
Fisher block for       is given by

Factors estimated using decayed averages that are also averaged over 
locations. e.g.
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CIFAR-10 convnet
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Recent large mini-batch experiments

● Resnet-50 trained on augmented 
SVHN dataset

● K-FAC maintains data efficiency as 
batch size increases while SGD w/ 
momentum baseline tops out 
quickly

Credit: Daniel Duckworth
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Recent large mini-batch experiments

● Recent paper from the RIKEN lab 
has applied K-FAC to Resnet-50 on 
Imagenet

● They use extremely large 
mini-batches up to 130k with 
massively parallel computation

● Show significant improvement in 
number of iterations all the way up 
to mini-batch sizes of 65k

https://arxiv.org/abs/1811.12019
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Public TensorFlow implementation

● There is a highly sophisticated 
implementation of K-FAC in TensorFlow 
available on Github

● Supports the following and more:
○ Fully-connected, convolutional, and 

recurrently layers

○ Various distribution strategies

○ Automatic structure determination of 
the graph

○ Automatic adjustment of damping, 
learning rate and momentum

https://github.com/tensorflow/kfac


Thanks for listening!
Questions?


