The K-FAC method for neural network optimization

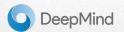
James Martens

Thanks to my various collaborators on K-FAC research and engineering:

Roger Grosse, Jimmy Ba, Vikram Tankasali, Matthew Johnson, Daniel Duckworth, Zack Nado, and many more!

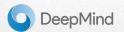
Introduction

- Neural networks are everywhere and the need to quickly train them has never been greater
- Main workhorse "diagonal" methods like RMSProp and Adam typically aren't much faster than *well-tuned* SGD w/ momentum
- New non-diagonal methods like <u>K-FAC</u> and <u>Natural Nets</u> provide much more substantial performance improvements and make better use of larger mini-batch sizes
- In this talk I will introduce the basic K-FAC method, discuss extensions to RNNs and Convnets, and present empirical evidence for its efficacy



Talk outline

- Discussion of second order methods
- Discussion of generalized Gauss-Newton matrix and relationship to Fisher (drawing heavily from this <u>paper</u>)
- Intro to Kronecker-factored approximate curvature (K-FAC) approximation for fully-connected layers (+ results from <u>paper</u>)
- Extension of approximation to RNNs + results (paper)
- Extension of approximation to Convnets + (paper)
- Large batch experiments performed at Google and elsewhere



Notation, loss and objective function

• Neural network function: $f(x, \theta)$

• Loss:
$$-\log p(y|x,\theta) = -\log r(y|f(x,\theta)) = L(y,f(x,\theta))$$

• Loss derivative:
$$\mathcal{D}V = \frac{\mathrm{d}L(y, f(x, \theta))}{\mathrm{d}V} = -\frac{\mathrm{d}\log p(y|x, \theta)}{\mathrm{d}V}$$

• Objective function:

$$h(\theta) = \mathbb{E}_Q[L(y, f(x, \theta))]$$

2nd-order methods

Formulation

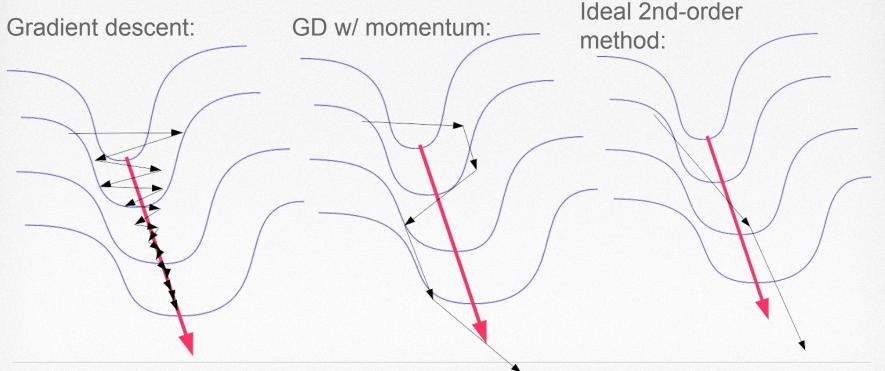
- Approximate $h(\theta)$ by its 2nd-order Taylor series around current θ : $h(\theta + d) \approx h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} H(\theta) d$
- Minimize this local approximation to compute update:

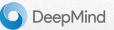
$$-H(\theta)^{-1}\nabla h(\theta) = \operatorname*{arg\,min}_{d} \left(h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} H(\theta) d \right)$$

• Update current iterate:

$$\theta_{k+1} = \theta_k - H(\theta)^{-1} \nabla h(\theta_k)$$

A cartoon comparison of different optimizers





The model trust problem in 2nd-order methods

- Quadratic approximation of loss is only trustworthy in a local region around current $\boldsymbol{\theta}$
- Unlike gradient descent, which implicitly approximates $LI \approx H(\theta)$ (where L upper-bounds the **global** curvature), the real $H(\theta)$ may underestimate curvature along some directions as we move away from current θ (and curvature may even be *negative*!)
- **Solution:** Constrain update d to lie in some local region R around 0 where approximation remains a good one

$$\underset{d \in R}{\operatorname{arg\,min}} \left(h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} H(\theta) d \right)$$



Trust-regions and "damping" (aka Tikhonov regularization)

• If we take $R = \{d : ||d||_2 \le r\}$ then computing $\underset{d \in R}{\operatorname{arg\,min}} \left(h(\theta) + \nabla h(\theta)^\top d + \frac{1}{2}d^\top H(\theta)d\right)$

is often equivalent to computing $-(H(\theta) + \lambda I)^{-1} \nabla h(\theta) = \underset{d}{\operatorname{arg\,min}} \left(h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} (H(\theta) + \lambda I) d \right)$ for some λ .

• λ is a complicated function of r, but fortunately we can just work with λ directly. There are effective heuristics for adapting λ such as the "Levenberg-Marquardt" method.



Alternative curvature matrices

A complementary solution to the model trust problem

- In place of the Hessian we can use a matrix with more forgiving properties that tends to upper-bound the curvature over larger regions (without being too pessimistic!)
- Very important effective technique in practice if used alongside previously discussed trust-region / damping techniques
- Some important examples
 - Generalized Gauss-Newton matrix (GGN)
 - Fisher information matrix (often equivalent to the GGN)
 - Empirical Fisher information matrix (a type of approximation to the Fisher)

Generalized Gauss-Newton

Definition

To define the GGN matrix we require that • $h(\theta) = \frac{1}{m} \sum_{i=1}^{m} h_i(\theta) = \frac{1}{m} \sum_{i=1}^{m} \ell(y_i, f(x_i, \theta))$ where $\ell(y,z)$ is a loss that is convex in z, and $f(x, \theta)$ is some high-dimensional function (e.g. neural network w/ input x) The GGN is then given by $G = \frac{1}{m} \sum_{i=1}^{m} J_i^{\top} H_i J_i \quad \text{where } J_i \text{ is Jacobian of } f(x_i, \theta) \text{ w.r.t.} \theta$ and H_i is the Hessian of $\ell(y_i, z_i)$

w.r.t.
$$z_i = f(x_i,$$

H

Generalized Gauss-Newton

• *G* is equal to the Hessian of $h(\theta)$ if we replace each $f(x_i, \theta)$ with its local 1st-order approximation centered at current θ :

$$f(x_i, \theta') \approx f(\theta) + J_i \cdot (\theta' - \theta)$$

• When $\ell(y,z) = \|y-z\|^2/2$ we have $H_i = I$ and so $G = \frac{1}{m}\sum_{i=1}^m J_i^\top J_i$

which is the matrix used in the well-known Gauss-Newton approach for optimizing nonlinear least squares



Relationship of GGN to the Fisher

• When $\ell(y, z) = -\log p(y|z)$ with z the "natural parameter" of some exponential family conditional density p(y|z), G becomes **equivalent** to the Fisher information matrix:

$$F = \mathbb{E}[\mathcal{D}\theta \mathcal{D}\theta^{\top}] = \operatorname{cov}(\mathcal{D}\theta, \mathcal{D}\theta)$$

Recall notation:

$$\mathcal{D}V = \frac{\mathrm{d}L(y, f(x, \theta))}{\mathrm{d}V} = -\frac{\mathrm{d}\log p(y|x, \theta)}{\mathrm{d}V}$$

- In this case $G^{-1}\nabla h(\theta)$ is equal to the well-known "natural gradient", although has the additional interpretation as a second-order update
- This relationship justifies the common use of methods like damping/trust regions with natural gradient based optimizers



GGN Properties

The GGN matrix has the following nice properties:

- it always PSD
- it is often more "conservative" than the Hessian (but isn't guaranteed to be larger in *all* directions)
- optimizer using update $d = -\alpha G^{-1} \nabla h(\theta)$ will be invariant to any smooth reparameterization in limit as $\alpha \to 0$
- for RELU networks the GGN is equal to the Hessian on diagonal blocks
- and most importantly... works much better than the Hessian in practice for neural networks!

Updates computed using the GGN can sometimes make *orders of magnitude* more progress than gradient updates for neural nets. But there is a catch...

The problem of high dimensional objectives

The main issue with 2nd-order methods

- For neural networks, $heta \in {\rm I\!R}^n$ can have 10s of millions of dimensions
- We simply cannot compute and store an $n\times n$ matrix for such an n , let alone invert it! $(\mathcal{O}(n^3))$
- Thus we must approximate the curvature matrix using one of a number of techniques that simplify its structure to allow for efficient...
 - computation,
 - storage,
 - and inversion

Curvature matrix approximations

- Well known curvature matrix approximations include:
 - diagonal (e.g. RMSprop, Adam)
 - block-diagonal (e.g. <u>TONGA</u>)
 - low-rank + diagonal (e.g. L-BFGS)
 - Krylov subspace (e.g. <u>HF</u>)
- The K-FAC approximation of the Fisher/GGN uses a more sophisticated approximation that exploits the special structure present of neural networks

The amazing Kronecker product

• The Kronecker product is defined by:

$$B \otimes C \equiv \begin{bmatrix} [B]_{1,1}C & \cdots & [B]_{1,n}C \\ \vdots & \ddots & \vdots \\ [B]_{m,1}C & \cdots & [B]_{m,n}C \end{bmatrix}$$

• And has many nice properties, such as:

Kronecker-factored approximation

• Consider a weight matrix W in network which computes the mapping:

$$s = Wa$$

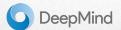
(i.e. a "fully connected layer" or "linear layer")

Here, and going forward ${\cal F}$ will refer just to the ${\it block}$ of the Fisher corresponding to W

- Define g = Ds and observe that $DW = ga^{\top}$. If we approximate g and a as statistically independent, we can write F as:
- $F = \operatorname{cov}(\operatorname{vec}(\mathcal{D}W), \operatorname{vec}(\mathcal{D}W)) = \mathbb{E}[\operatorname{vec}(ga^{\top}) \operatorname{vec}(ga^{\top})^{\top}] = \mathbb{E}[(a \otimes g)(a \otimes g)^{\top}]$
 - $= \mathbb{E}[(aa^{\top}) \otimes (gg^{\top})] = \mathbb{E}[aa^{\top}] \otimes \mathbb{E}[gg^{\top}] = A \otimes G,$

Recall notation:

 $\mathcal{D}V = \frac{\mathrm{d}L(y, f(x, \theta))}{\mathrm{d}V} = -\frac{\mathrm{d}\log p(y|x, \theta)}{\mathrm{d}V}$



Kronecker-factored approximation (cont.)

• Approximating $F = A \otimes G$ allows us to easily invert F and multiply the result by a vector, due to the following identities for Kronecker products:

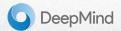
 $(B \otimes C)^{-1} = B^{-1} \otimes C^{-1}$ and $(B \otimes C) \operatorname{vec}(X) = \operatorname{vec}(CXB^{\top})$

- We can easily estimate the matrices
 A = 𝔼[aa^T] and G = 𝔼[gg^T] = cov(g,g)
 using simple Monte-Carlo and exp-decayed moving averages.
- They are of size **d** by **d** where **d** is the number of units in the incoming or outgoing layer. Thus inverting them is relatively cheap, and can be amortized over many iterations.



Further remarks about the K-FAC approximation

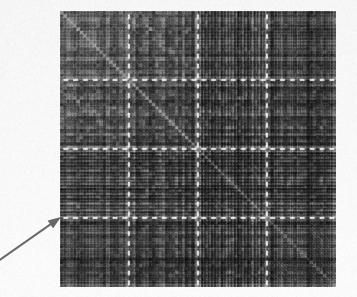
- Originally appeared in a 2000 paper by Tom Heskes!
- Can be seen as discarding order 3+ cumulants from the joint distribution of the a's and g's
 - (And thus is exact if the a's and g's are jointly Gaussian-distributed)
- For linear neural networks with a squared error loss:
 - is exact on the diagonal blocks
 - approximate natural gradient differs from exact one by a constant factor (<u>Bernacchia et al., 2018</u>)
- Can also be derived purely from the GGN perspective without invoking the Fisher (<u>Botev et al., 2017</u>)



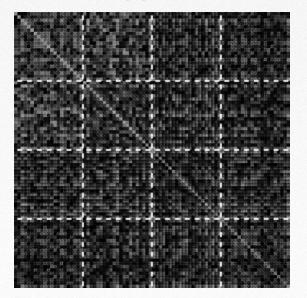
Visual inspection of approximation quality

4 middles layers of partially trained MNIST classifier

Exact



Approx

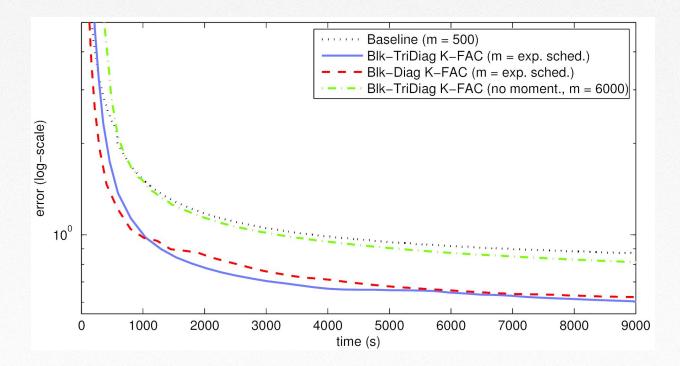


Dashed lines delineate the blocks

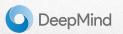
(plotting absolute value of entries, dark means small) K-FAC – James Martens

DeepMind

MNIST deep autoencoder - single GPU wall clock



Baseline = highly optimized SGD w/ momentum



Some stochastic convergence theory

- There is no **asymptotic** advantage to using 2nd-order methods or momentum over plain SGD w/ Polyak averaging
- Actually, SGD w/ *Polyak averaging* is **asymptotically optimal** among any estimator that sees *k* training cases, obtaining the optimal asymptotic rate:

$$E[h(\theta_k)] - h(\theta^*) \in \mathcal{O}\left(\frac{1}{k}\operatorname{tr}\left(H(\theta^*)^{-1}\Sigma\right)\right)$$

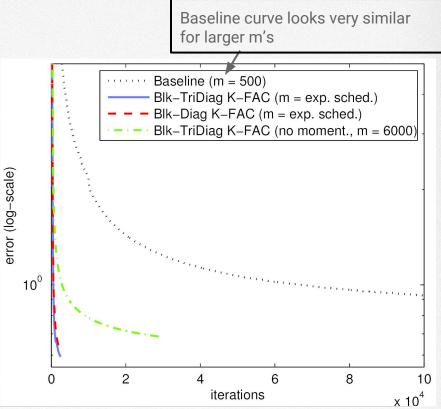
where θ^* is the optimum, and Σ is the (the limiting value of) the per-case gradient covariance

• However, **pre-asymptotically** there can still be an advantage to using 2nd-order updates and/or momentum. (Asymptotics kick in when signal-to-noise ratio in stochastic gradient becomes small.)



MNIST deep autoencoder - iteration efficiency

- K-FAC uses far fewer total iterations than a well-tuned baseline when given a **very large** mini-batch size
 - This makes it ideal for large distributed systems
- Intuition: the asymptotics of stochastic convergence kick in sooner with more powerful optimizers since "optimization" stops being the bottleneck sooner

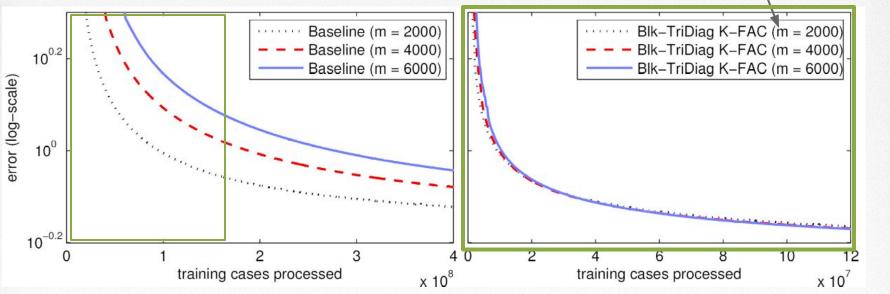




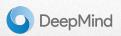
MNIST deep autoencoder - data efficiency

Baselines spends much longer in pre-asymptotic phase

Exact



Baseline = highly optimized SGD w/ momentum + Polyak averaging



K-FAC approximation for recurrent layers

• The situation for RNNs is somewhat more complicated. We have

$$s_t = W a_t,$$

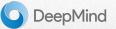
where t indexes the time-step from 1 to \mathcal{T} .

• Defining $g_t = \mathcal{D}s_t$ we have that

$$\mathcal{D}W = \sum_{t=1}^{\mathcal{T}} g_t a_t^{\top}$$

Recall notation:
$$\mathcal{D}V = \frac{\mathrm{d}L(y, f(x, \theta))}{\mathrm{d}V} = -\frac{\mathrm{d}\log p(y|x, \theta)}{\mathrm{d}V}$$

• Define
$$w_t = \operatorname{vec}(g_t a_t^{\top})$$
 so that $\operatorname{vec}(\mathcal{D}W) = \sum_{t=1}^{\mathcal{T}} w_t$. Then we have
 $F = \mathbb{E}_{\mathcal{T}}[F_{\mathcal{T}}]$, where
 $F_{\mathcal{T}} = \operatorname{cov}(\operatorname{vec}(\mathcal{D}W), \operatorname{vec}(\mathcal{D}W) | \mathcal{T}) = \operatorname{cov}\left(\sum_{t=1}^{\mathcal{T}} w_t, \sum_{t=1}^{\mathcal{T}} w_t \middle| \mathcal{T}\right) = \sum_{t=1}^{\mathcal{T}} \sum_{s=1}^{\mathcal{T}} \operatorname{cov}(w_t, w_s | \mathcal{T})$



Basic initial approximations

- Denote $V_{t,s} = \operatorname{cov}(w_t, w_s)$
- If we make the following approximating assumptions:
 - $\circ ~~ {\cal T}$ is independent of the w_t 's
 - $\circ V_{t,s}$ depends only on d=t-s and is given by V_d ("Temporal homogeneity")
 - $\circ \quad a_t$'s and g_t 's are independent (the original "K-FAC approximation"), so that:

 $V_d = A_d \otimes G_d$ where $A_{t-s} = A_{t,s} = \mathbb{E}[a_t a_s^\top]$ and $G_{t-s} = G_{t,s} = \mathbb{E}[g_t g_s^\top]$

then we have the initial approximation:

$$F_{\mathcal{T}} = \sum_{d=-\mathcal{T}}^{\mathcal{T}} (\mathcal{T} - |d|) V_d = \sum_{d=-\mathcal{T}}^{\mathcal{T}} (\mathcal{T} - |d|) (A_d \otimes G_d)$$



K-FAC - James Martens

Assuming independence across time

- Because a large sum of Kronecker products cannot be efficiently inverted we need to make additional approximating assumptions
- The simplest one we can make is to assume that the w_t 's are independent across time (or more weakly that the g_t 's are uncorrelated across time), so that $V_d = 0$ for $d \neq 0$.
- This gives us and thus: $F_{\mathcal{T}} = \sum_{d=-\mathcal{T}}' (\mathcal{T} - |d|) V_d = (\mathcal{T} - 0) V_0 = \mathcal{T} V_0 = \mathcal{T} A_0 \otimes G_0$ $F = \mathbb{E}[\mathcal{T}] (A_0 \otimes G_0)$

This is just a single Kronecker-product and therefore easy to estimate and invert!

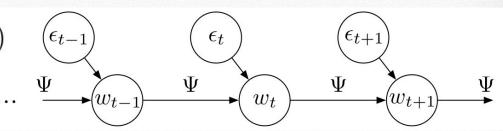
Modeling temporal relationships using an LGGM

- Instead of assuming that temporal relationships between the w_t 's is non-existent we can try to model them using a simple statistical model
- Perhaps the simplest such (non-trivial) model is a chained structured Linear Gaussian Graphical Model (LGGM) defined by

 $w_t = \Psi w_{t-1} + \epsilon_t$

where,

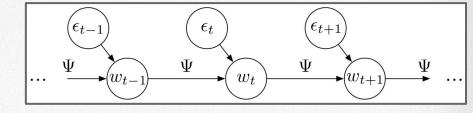
 ϵ_t are i.i.d. from $\mathcal{N}(0, \Sigma)$ and Ψ is a square matrix with spectral radius < 1



 simplify the computations we will assume that this models extends infinitely in both directions

Initial computations

• It is straightforward to show that $\Psi = V_1 V_0^{-1}$



• Define "transformed" quantities

$$\hat{F}_{\mathcal{T}} = V_0^{1/2} F_{\mathcal{T}} V_0^{1/2}$$
 and $\hat{\Psi} = \hat{V}_1 = V_0^{-1/2} \Psi V_0^{1/2}.$

- And note that because we have $F^{-1} \ = \ V_0^{-1/2} \hat{F}^{-1} V_0^{-1/2}$ it suffices to compute \hat{F}^{-1}

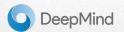
Option 1: V_1 is symmetric

- If we assume that V_1 , the 1-step temporal cross-covariance, is symmetric, this implies that $\hat{\Psi}$ is symmetric
- Let $U \operatorname{diag}(\hat{\psi}) U^{\top} = \hat{\Psi}$ be the eigendecomposition of $\hat{\Psi}$
- It can be shown that

$$\hat{F}^{-1} = U \operatorname{diag}(\gamma(\hat{\psi})) U^{\top}$$

where

$$\gamma(x) = 1/\mathbb{E}_{\mathcal{T}}[\eta_{\mathcal{T}}(x)] \quad \text{with} \quad \eta_{\mathcal{T}}(x) = \frac{\mathcal{T}(1-x^2) - 2x(1-x^{\mathcal{T}})}{(1-x)^2}$$



Option 2: Using the limiting value as $\mathcal{T} ightarrow \infty$

• A second option to obtain a tractable formula is to compute the limiting value: $\hat{r}_{1} = r_{2} (\hat{r}_{1})^{2}$

$$\hat{F} = \mathbb{E}_{\mathcal{T}}[\hat{F}_{\mathcal{T}}^{(\infty)}]$$

where we define

$$\hat{F}_{\mathcal{T}}^{(\infty)} \equiv \lim_{\mathcal{T}' \to \infty} \frac{\mathcal{T}}{\mathcal{T}'} \hat{F}_{\mathcal{T}'}.$$

This gives (with some work) the remarkably simple expression:

$$\hat{F}^{-1} = \frac{1}{\mathbb{E}_{\mathcal{T}}[\mathcal{T}]} (I - \hat{\Psi}) (I - \hat{\Psi}^{\top} \hat{\Psi})^{-1} (I - \hat{\Psi}^{\top})$$



K-FAC - James Martens

Efficient computation with Kronecker products

• The formulae for \hat{F}^{-1} in **Option 1** and **Option 2** can be used to efficiently multiply a vector by \hat{F}^{-1} , starting from the identities:

 $V_0 = A_0 \otimes G_0$ and $V_1 = A_1 \otimes G_1$

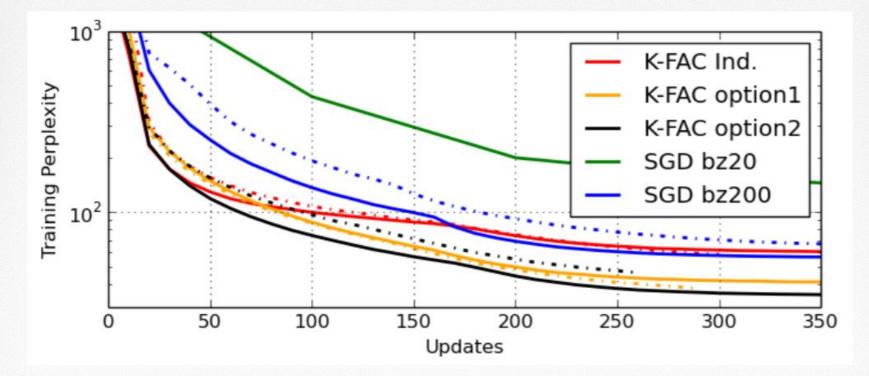
(Boils down to several eigen-decompositions and a dozen or so matrix-matrix multiplications with **d** by **d** matrices, where **d** = layer width.)

- Cost of these operations is independent of ${\mathcal T}$, and can be amortized over iterations and parallelized.
- Factors estimated using decayed averages that are also averaged over time-steps. e.g. $1 \sum_{r=1}^{T} \mathbb{E}[a_{r} = a_{r}^{T}]$

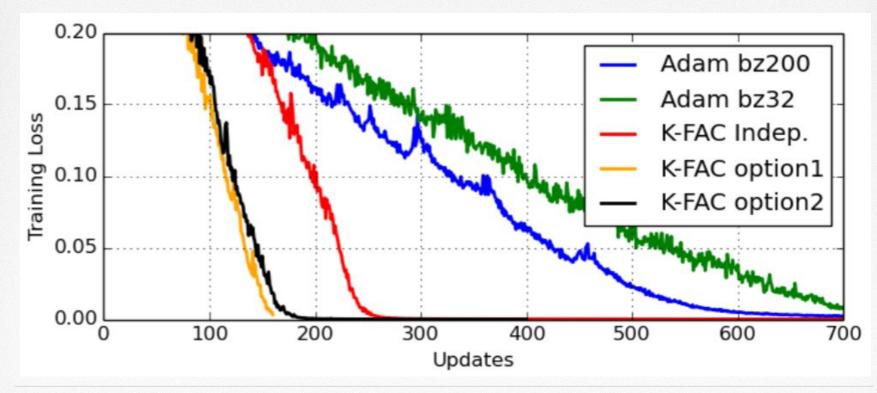
$$G_1 = \frac{1}{\mathcal{T}} \sum_{t=1}^{\prime} \mathbb{E}[g_{t+1}g_t^{\top}]$$



Experiment 1: 2-layer LSTM on Penn TreeBank



Experiment 2: DNC "copy task"



Kronecker approximation for conv layers (KFC)

- A convolutional layer can be described as follows:
 - $\circ~$ extract a "patch vector" a_t for each "location" $t\in\{1,2,...,\mathcal{T}\}$ from the image/feature map incoming to the layer
 - multiply each patch vector by a "filter bank" matrix W:

$$s_t = W a_t,$$

- \circ form the output feature map from the s_t 's according location t
- Gradient is once again just $\mathcal{D}W = \sum_{t=1}^{\mathcal{T}} g_t a_t^{\top}$ where $g_t = \mathcal{D}s_t$
- This is structurally very similar to the recurrent case, with locations playing the role of time-steps



Kronecker approximation for conv layers (KFC)

• If we make the following approximating assumptions:

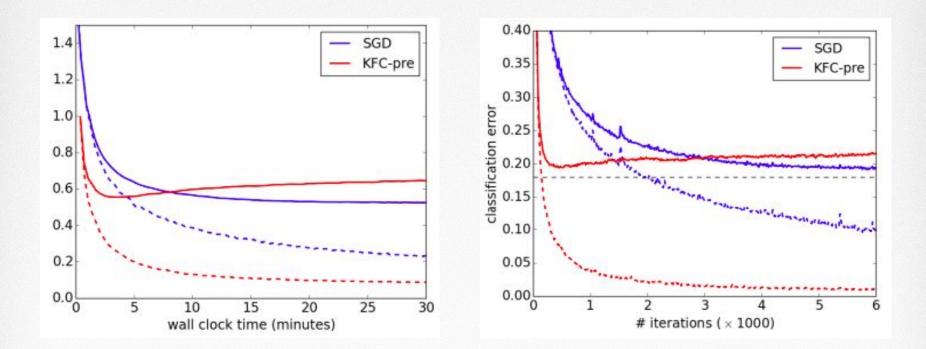
- \circ the a_t 's are independent of the g_t 's,
- \circ different g_t 's uncorrelated,
- $\circ~$ the distributions of a_t and g_t don't depend on index t (i.e. "spatially homogeneous")

Then following a similar (but simpler) argument to the recurrent case, the Fisher block for W is given by $F = \mathcal{T} \cdot (A \otimes G)$

Factors estimated using decayed averages that are also averaged over locations. e.g. $A = \frac{1}{\tau} \sum_{t=1}^{\tau} \mathbb{E}[a_t a_t^{\top}]$

K-FAC – James Martens

CIFAR-10 convnet

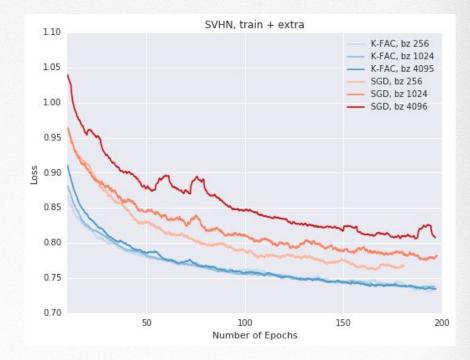




K-FAC - James Martens

Recent large mini-batch experiments

- Resnet-50 trained on augmented SVHN dataset
- K-FAC maintains data efficiency as batch size increases while SGD w/ momentum baseline tops out quickly

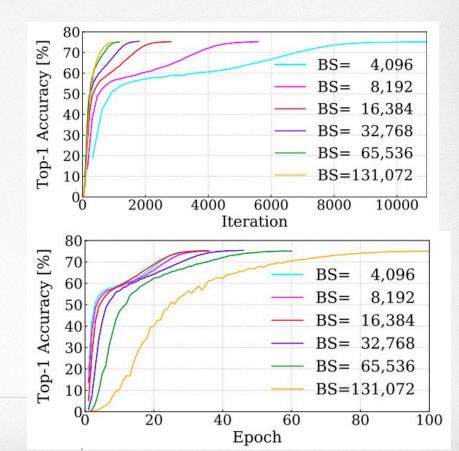


Credit: Daniel Duckworth



Recent large mini-batch experiments

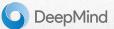
- Recent <u>paper</u> from the RIKEN lab has applied K-FAC to Resnet-50 on *Imagenet*
- They use extremely large mini-batches up to 130k with massively parallel computation
- Show significant improvement in number of iterations all the way up to mini-batch sizes of 65k



Public TensorFlow implementation

- There is a highly sophisticated implementation of K-FAC in TensorFlow available on Github
- Supports the following and more:
 - Fully-connected, convolutional, and recurrently layers
 - Various distribution strategies
 - Automatic structure determination of the graph
 - Automatic adjustment of damping, learning rate and momentum

Why GitHub	? ∨ Enterprise Explore ∨ Mai	rketplace Pricing 🗸		Sign in Sign up
tensorflow / kfa	ac		• Watch 10	★ Star 92 ¥ Fork 18
<> Code () Issu	ues 6 🕅 Pull requests 0 🕅	Projects 0 🔟 Insights		
n implementation	of KFAC for TensorFlow			
🕝 100 commit	ts 🖗 1 branch	S 0 releases	4 6 contributors	화 Apache-2.0
Branch: master -	New pull request		Fi	nd file Clone or download
mattij [kfac] bump	tensorflow version requirements in setup.p	and .travis.yml	Lates	it commit 27baa36 8 hours ag
mattij [kfac] bump	o tensorflow version requirements in setup.p \nInternal refactor\n	w and .travis.ym	Lates	-
-			Lates	9 days ag
docs kfac	\ninternal refactor\n	al in autoencoder_mnist.py		t commit 27baa36 8 hours ag 9 days ag a day ag 7 hours ag
docs	\nInternal refactor\n Made damping adaptation option	al in autoencoder_mnist.py		9 days ag a day ag 7 hours ag
docs kfac :travis.yml	\nInternal refactor\n Made damping adaptation option [kfac] bump tensorflow version n	al in autoencoder_mnist.py		9 days ag a day ag
docs kfac travis.yml AUTHORS	\nInternal refactor\n Made damping adaptation option [Kfac] bump tensorflow version n Placeholder for initial commit.	al in autoencoder_mnist.py		9 days ag a day ag 7 hours ag 9 days ag



Thanks for listening! Questions?