
The K-FAC method for neural network
optimization

James Martens

Thanks to my various collaborators on K-FAC research and engineering:

Roger Grosse, Jimmy Ba, Vikram Tankasali, Matthew Johnson, Daniel Duckworth, Zack Nado, and
many more!

K-FAC — James Martens

Introduction

● Neural networks are everywhere and the need to quickly train them has never
been greater

● Main workhorse “diagonal” methods like RMSProp and Adam typically aren’t
much faster than well-tuned SGD w/ momentum

● New non-diagonal methods like K-FAC and Natural Nets provide much more
substantial performance improvements and make better use of larger
mini-batch sizes

● In this talk I will introduce the basic K-FAC method, discuss extensions to
RNNs and Convnets, and present empirical evidence for its efficacy

https://arxiv.org/abs/1503.05671
https://arxiv.org/abs/1507.00210

K-FAC — James Martens

Talk outline

● Discussion of second order methods

● Discussion of generalized Gauss-Newton matrix and relationship to Fisher
(drawing heavily from this paper)

● Intro to Kronecker-factored approximate curvature (K-FAC) approximation for
fully-connected layers (+ results from paper)

● Extension of approximation to RNNs + results (paper)

● Extension of approximation to Convnets + (paper)

● Large batch experiments performed at Google and elsewhere

https://arxiv.org/abs/1412.1193
https://arxiv.org/abs/1503.05671
https://openreview.net/pdf?id=HyMTkQZAb
https://arxiv.org/abs/1602.01407

K-FAC — James Martens

Notation, loss and objective function

● Neural network function:

● Loss:

● Loss derivative:

● Objective function:

K-FAC — James Martens

2nd-order methods
Formulation

● Approximate by its 2nd-order Taylor series around current :

● Minimize this local approximation to compute update:

● Update current iterate:

K-FAC — James Martens

A cartoon comparison of different optimizers

 Gradient descent: GD w/ momentum:
Ideal 2nd-order
method:

K-FAC — James Martens

● Quadratic approximation of loss is only trustworthy in a local region around
current

● Unlike gradient descent, which implicitly approximates
(where upper-bounds the global curvature), the real may
underestimate curvature along some directions as we move away from
current (and curvature may even be negative!)

● Solution: Constrain update to lie in some local region around
where approximation remains a good one

The model trust problem in 2nd-order methods

K-FAC — James Martens

Trust-regions and “damping” (aka Tikhonov regularization)

● If we take then computing

is often equivalent to computing

 for some .

● is a complicated function of , but fortunately we can just work with
directly. There are effective heuristics for adapting such as the
“Levenberg-Marquardt” method.

K-FAC — James Martens

● In place of the Hessian we can use a matrix with more forgiving properties
that tends to upper-bound the curvature over larger regions (without being too
pessimistic!)

● Very important effective technique in practice if used alongside previously
discussed trust-region / damping techniques

● Some important examples
○ Generalized Gauss-Newton matrix (GGN)

○ Fisher information matrix (often equivalent to the GGN)

○ Empirical Fisher information matrix (a type of approximation to the Fisher)

Alternative curvature matrices
A complementary solution to the model trust problem

K-FAC — James Martens

Generalized Gauss-Newton
Definition

● To define the GGN matrix we require that

 where
 is a loss that is convex in , and

 is some high-dimensional function (e.g. neural network w/ input)

● The GGN is then given by
 where is Jacobian of w.r.t.
 and is the Hessian of

w.r.t.

K-FAC — James Martens

● is equal to the Hessian of if we replace each with its local
1st-order approximation centered at current :

● When we have and so

which is the matrix used in the well-known Gauss-Newton approach for
optimizing nonlinear least squares

Generalized Gauss-Newton

K-FAC — James Martens

Relationship of GGN to the Fisher

● When with the “natural parameter” of some
exponential family conditional density , becomes equivalent to the
Fisher information matrix:

● In this case is equal to the well-known “natural gradient”,
although has the additional interpretation as a second-order update

● This relationship justifies the common use of methods like damping/trust
regions with natural gradient based optimizers

Recall notation:

K-FAC — James Martens

GGN Properties
The GGN matrix has the following nice properties:
● it always PSD

● it is often more “conservative” than the Hessian (but isn’t guaranteed to be larger in
all directions)

● optimizer using update will be invariant to any smooth
reparameterization in limit as

● for RELU networks the GGN is equal to the Hessian on diagonal blocks

● and most importantly… works much better than the Hessian in practice for
neural networks!

Updates computed using the GGN can sometimes make orders of magnitude
more progress than gradient updates for neural nets. But there is a catch...

K-FAC — James Martens

The problem of high dimensional objectives
The main issue with 2nd-order methods

● For neural networks, can have 10s of millions of dimensions

● We simply cannot compute and store an matrix for such an , let
alone invert it! ()

● Thus we must approximate the curvature matrix using one of a number of
techniques that simplify its structure to allow for efficient...
○ computation,

○ storage,

○ and inversion

K-FAC — James Martens

Curvature matrix approximations

● Well known curvature matrix approximations include:
○ diagonal (e.g. RMSprop, Adam)

○ block-diagonal (e.g. TONGA)

○ low-rank + diagonal (e.g. L-BFGS)

○ Krylov subspace (e.g. HF)

● The K-FAC approximation of the Fisher/GGN uses a more sophisticated
approximation that exploits the special structure present of neural networks

http://www.iro.umontreal.ca/~lisa/publications2/index.php/attachments/single/101
http://www.cs.toronto.edu/~jmartens/docs/Deep_HessianFree.pdf

K-FAC — James Martens

The amazing Kronecker product

● The Kronecker product is defined by:

● And has many nice properties, such as:
○

○

○

K-FAC — James Martens

● Consider a weight matrix in network which computes the mapping:

(i.e. a “fully connected layer” or “linear layer”)

Here, and going forward will refer just to the block of the Fisher
corresponding to

● Define and observe that . If we approximate and
as statistically independent, we can write as:

Kronecker-factored approximation

Recall notation:

K-FAC — James Martens

Kronecker-factored approximation (cont.)

● Approximating allows us to easily invert and multiply the
result by a vector, due to the following identities for Kronecker products:

● We can easily estimate the matrices

using simple Monte-Carlo and exp-decayed moving averages.

● They are of size d by d where d is the number of units in the incoming or
outgoing layer. Thus inverting them is relatively cheap, and can be amortized
over many iterations.

K-FAC — James Martens

Further remarks about the K-FAC approximation

● Originally appeared in a 2000 paper by Tom Heskes!

● Can be seen as discarding order 3+ cumulants from the joint distribution of
the ’s and ’s
○ (And thus is exact if the ’s and ’s are jointly Gaussian-distributed)

● For linear neural networks with a squared error loss:
○ is exact on the diagonal blocks
○ approximate natural gradient differs from exact one by a constant factor

(Bernacchia et al., 2018)

● Can also be derived purely from the GGN perspective without invoking the
Fisher (Botev et al., 2017)

https://www.researchgate.net/publication/2820996_On_Natural_Learning_and_Pruning_in_Multilayered_Perceptrons
https://papers.nips.cc/paper/7834-exact-natural-gradient-in-deep-linear-networks-and-its-application-to-the-nonlinear-case.pdf
https://arxiv.org/abs/1706.03662

K-FAC — James Martens

Visual inspection of approximation quality
4 middles layers of partially trained MNIST classifier

(plotting absolute value of entries, dark means small)

Exact Approx

Dashed lines delineate the blocks

K-FAC — James Martens

MNIST deep autoencoder - single GPU wall clock

Baseline = highly optimized SGD w/ momentum

K-FAC — James Martens

Some stochastic convergence theory
● There is no asymptotic advantage to using 2nd-order methods or momentum

over plain SGD w/ Polyak averaging

● Actually, SGD w/ Polyak averaging is asymptotically optimal among any
estimator that sees training cases, obtaining the optimal asymptotic rate:

where is the optimum, and is the (the limiting value of) the per-case
gradient covariance

● However, pre-asymptotically there can still be an advantage to using
2nd-order updates and/or momentum. (Asymptotics kick in when
signal-to-noise ratio in stochastic gradient becomes small.)

K-FAC — James Martens

MNIST deep autoencoder - iteration efficiency

● K-FAC uses far fewer total iterations
than a well-tuned baseline when
given a very large mini-batch size
○ This makes it ideal for large

distributed systems

● Intuition: the asymptotics of
stochastic convergence kick in
sooner with more powerful
optimizers since “optimization”
stops being the bottleneck sooner

Baseline curve looks very similar
for larger m’s

K-FAC — James Martens

MNIST deep autoencoder - data efficiency
Baselines spends much longer in pre-asymptotic phase

Exact Approx

Baseline = highly optimized SGD w/ momentum + Polyak averaging

m = mini-batch size

K-FAC — James Martens

K-FAC approximation for recurrent layers

● The situation for RNNs is somewhat more complicated. We have

where indexes the time-step from 1 to .

● Defining we have that

● Define so that .. Then we have
 , where

Recall notation:

K-FAC — James Martens

Basic initial approximations

● Denote

● If we make the following approximating assumptions:
○ is independent of the ’s

○ depends only on and is given by (“Temporal homogeneity”)

○ ’s and ’s are independent (the original “K-FAC approximation”), so that:

 where and

then we have the initial approximation:

K-FAC — James Martens

Assuming independence across time

● Because a large sum of Kronecker products cannot be efficiently inverted we
need to make additional approximating assumptions

● The simplest one we can make is to assume that the ’s are independent
across time (or more weakly that the ‘s are uncorrelated across time), so
that for .

● This gives us
and thus:

 This is just a single Kronecker-product and therefore easy to estimate and invert!

K-FAC — James Martens

Modeling temporal relationships using an LGGM

● Instead of assuming that temporal relationships between the ’s is
non-existent we can try to model them using a simple statistical model

● Perhaps the simplest such (non-trivial) model is a chained structured Linear
Gaussian Graphical Model (LGGM) defined by

where,

and is a square matrix with
spectral radius < 1

● simplify the computations we will assume that this models extends infinitely
in both directions

K-FAC — James Martens

● It is straightforward to show that

● Define “transformed” quantities

● And note that because we have

it suffices to compute

Initial computations

K-FAC — James Martens

Option 1: is symmetric

● If we assume that , the 1-step temporal cross-covariance, is symmetric,
this implies that is symmetric

● Let be the eigendecomposition of

● It can be shown that

where
with

K-FAC — James Martens

Option 2: Using the limiting value as .

● A second option to obtain a tractable formula is to compute the limiting
value:

where we define

This gives (with some work) the remarkably simple expression:

K-FAC — James Martens

Efficient computation with Kronecker products

● The formulae for in Option 1 and Option 2 can be used to efficiently
multiply a vector by , starting from the identities:

(Boils down to several eigen-decompositions and a dozen or so matrix-matrix
multiplications with d by d matrices, where d = layer width.)

● Cost of these operations is independent of , and can be amortized over
iterations and parallelized.

● Factors estimated using decayed averages that are also averaged over
time-steps. e.g.

K-FAC — James Martens

Experiment 1: 2-layer LSTM on Penn TreeBank

K-FAC — James Martens

Experiment 2: DNC “copy task”

K-FAC — James Martens

Kronecker approximation for conv layers (KFC)

● A convolutional layer can be described as follows:
○ extract a “patch vector” for each “location” from the

image/feature map incoming to the layer

○ multiply each patch vector by a “filter bank” matrix :

○ form the output feature map from the ’s according location

● Gradient is once again just where

● This is structurally very similar to the recurrent case, with locations playing
the role of time-steps

K-FAC — James Martens

Kronecker approximation for conv layers (KFC)

● If we make the following approximating assumptions:
○ the ’s are independent of the ’s,

○ different ’s uncorrelated,

○ the distributions of and don’t depend on index (i.e. “spatially
homogeneous”)

Then following a similar (but simpler) argument to the recurrent case, the
Fisher block for is given by

Factors estimated using decayed averages that are also averaged over
locations. e.g.

K-FAC — James Martens

CIFAR-10 convnet

K-FAC — James Martens

Recent large mini-batch experiments

● Resnet-50 trained on augmented
SVHN dataset

● K-FAC maintains data efficiency as
batch size increases while SGD w/
momentum baseline tops out
quickly

Credit: Daniel Duckworth

K-FAC — James Martens

Recent large mini-batch experiments

● Recent paper from the RIKEN lab
has applied K-FAC to Resnet-50 on
Imagenet

● They use extremely large
mini-batches up to 130k with
massively parallel computation

● Show significant improvement in
number of iterations all the way up
to mini-batch sizes of 65k

https://arxiv.org/abs/1811.12019

K-FAC — James Martens

Public TensorFlow implementation

● There is a highly sophisticated
implementation of K-FAC in TensorFlow
available on Github

● Supports the following and more:
○ Fully-connected, convolutional, and

recurrently layers

○ Various distribution strategies

○ Automatic structure determination of
the graph

○ Automatic adjustment of damping,
learning rate and momentum

https://github.com/tensorflow/kfac

Thanks for listening!
Questions?

